Peter S. Nelson

Appointments and Affiliations

 
 
Fred Hutchinson Cancer Research Center
Human Biology Division
Program in Prostate Cancer Research
Member
University of Washington
School of Medicine
Medicine
Oncology
Professor
University of Washington
School of Medicine
Genome Sciences and Pathology
Adjunct
Professional Headshot of Peter S. Nelson

Mailing Address

Fred Hutchinson Cancer Research Center
1100 Fairview Avenue N.
P.O. Box 19024
D4-100
Seattle, Washington 98109-1024
United States

Degrees

M.D., University of Kansas, Medicine, 1986.
B.A., University of Kansas, Chemistry/Biology/Biochemistry, 1982.

Research Interests

The focus of current work in the Nelson lab involves efforts to understand the process of prostate carcinogenesis with an aim toward developing diagnostic, prognostic, and therapeutic strategies.

The Major Projects are:

1. Molecular Analysis of Therapies for Early and Late Stage Prostate Carcinoma. These investigations aim to determine molecular features that associate with response and resistance mechanisms to cytotoxic chemotherapy and pathway-targeted agents. Several clinical (translational) trials are underway including a studies incorporating neoadjuvant therapies followed by radical prostatectomy. Tissue samples are acquired pre- and post-therapy and molecular correlates of direct drug effects are identified to define signatures: (a) predictive of therapeutic response and (b) predictive of disease outcome (relapse).

2. Characterization of the Prostate Androgen-Response Program. A major focus of the lab has been the identification of down-stream ''effector'' genes that are responsible for cellular events (e.g. proliferation) after androgen receptor (AR) activation. We have identified >170 genes that are regulated by androgens in the prostate. Of these, many have expression profiles restricted to the prostate. Systematic studies involving overexpression and down-regulation of these genes is in progress to determine the cellular function with the aim of identifying those genes involved in proliferation, anti-apoptosis, and differentiation. Genes with prostate-restricted expression may serve as therapeutic targets.

3. Analysis of Prostate Serine Protease Function in Metastatic Prostate Carcinoma. Prostate cancer has a high prediliction for metastasizing to bone, and often produces a ''blastic'' bone response. We hypothesize that the expression or production of prostate proteases in ectopic sites (such as bone), contribute to this disease process. The prostate produces several proteases in a highly tissue-specific fashion including several novel proteases identified in our laboratory. Current studies are designed to characterize the substrate specificities of these proteases in order to determine if they may play a role in modulating carcinogenesis (invasion/metastasis) and serve as drug targets. We are also characterizing the function of several proteases through the use of transgenic mice.

4. Determining the role of aging and cellular senescence in prostate carcinogenesis. A new direction involves studies of aging-related changes in the prostate. This work represents a logical extension of studies attempting to understand the dramatic increase in prostate cancer incidence with advanced age. We have shown that senescent prostate stromal cells develop a secretory phenotype with the potential to influence the growth and survival of adjacent epithelium. We are now extending this work to understand aging related influences in other constituents of the tumor microenvironment and determine if androgens influence senescence and aging-related paracrine effects.

5. Normal Variation. This work evolved from large-scale analyses of transcript levels in benign tissues where we found that a substantial number of genes exhibit wide fluctuations in expression levels within genetically-identical individuals. We have shown that variability in gene expression within genetically identical individuals exceeds the genome-encoded variability across different genetic backgrounds, suggesting a mechanism for maintaining variation that could contribute to natural selection. Current work is focused on determining the role of normal variation in dictating cancer phenotypes.

Honors and Awards

2009-2011, Challenge Award, Prostate Cancer Foundation
2001, Scholar Award, Damon Runyon
1998, Career Development Award, NIH
1990, Chief Resident, University of Kansas, Medicine
1989, Resident Excellence, Roy Edwards Jr. Award, University of Kansas
1981, NSF Research Award in Biochemistry, NSF, University of Kansas

Previous Positions

1993-1996, Fellowship, University of Washington, Fred Hutchinson Cancer Center, Medical Oncology
1990-1992, Biotechnology Fellowship, National Cancer Institute
1989-1990, Chief Resident, University of Kansas, School of Medicine - KUMC
1986-1989, Intern/Resident, University of Kansas, School of Medicine - KUMC

 

Recent Publications

2014
2013
Schoenborn, JR, Nelson PS, Fang M.  2013.  Genomic profiling defines subtypes of prostate cancer with the potential for therapeutic stratification.. Clinical cancer research : an official journal of the American Association for Cancer Research. Abstract
Ho, ME, Quek S-I, True LD, Morrissey C, Corey E, Vessella RL, Dumpit R, Nelson PS, Maresh EL, Mah V et al..  2013.  Prostate cancer cell phenotypes based on AGR2 and CD10 expression.. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. Abstract
2012